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PREFACE

This work is the result of my attempt to approach the two
aircraft combat simulation problem from a game theoretic point of
view. The acceptance and support of this approach by the Air Force
Flight Dynamics Laboratory is gratefully acknowledged. I am indebted
to. Professors Roger W. Johnson and C«ex;ald #. Anderson at the Air
Force Institute of Technology for their advice and encouragement.

Our association has been a rewarding personal experience for me.
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ABSTRACT

The pursuit-evasion aspect of the two aircraft combat problem is
introduced as a fixed time, zero sum, perfect infoxrmation differential
game., The purpose of-Exigzdissertation is to solve this differential
game problem and to obtain closed-loop guidance or control laws. A
realistic aircraft model is presented for which a solution of this
combat problem is desired4??8ecause of the non-linear dynamics assoc-
iated with this model, anﬂgiﬁimal closed-loop solution cannot be
obtained. Three additional simplified aircraft models are introduced
as approximations to the realistic model. Optimal solutions and
closed-loop control laws are obtained for each of these models.

Analysis of the solutions and control laws reveals that they are
characteristically similar and to a certain extent independent of the
aircraft model. This enables the formulation of an approxi;ate
closed-loop ccntrol law for use with the original realistic model.

The optimality of this control law is established by applying it to
the pursuer in a differential game problem while the evader determines

the best open-loop evasive strategy.
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I. INTRCDUCTION

. In recent years, the problem of determining fhe performance
requirements for a superiority fighter aircraft has recsived the
attention of many researchers. The basic difficulty is the lack
of rumerical measures to evaluate the cffectiveness nf one aircraft
when pitted against another in a competitive or combative situation.
During an aircraft combat engagement there are periods when one
or both aircraft may be passive, aggressive or evasive depending
upon the vrelative capabilities and positions of the aircraft and
the desires of the pilots.

This dissertation considers the pursuit-evasion aspect of the
combat problem. One approach to the solution of this problem is
to determine the control of one aircraft which pursues in some
optimal manner another aircraft which either employs a predetermined
control law or follows a pre-specified trajectory. The difficully
associated with this approach is that the optimal solution to one
problem is not optimal if either the pra-specified control law or
trajectory is changed. Simply stated this means that no one guidance
scheme is optimai against all types of evasion. If optimal pursuit
and optimal evasion can be considered together, it becomes possible
to derive a numerical measure reflecting the cagabilities of the tve
aircraft. The prcblem of determining the optimal controls for such
a problem is a differential game problem. I order to have any
practical application, the solution to this problem must provide
feedback strategies, or what is equivalent, a continuous real-time

solution of open-loop strategies.
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hLd

o near optimal feedback strategies for a pursuit-evasion differ- '
ential game between two aircraft. The solubility of this problem
is dependent on the model chosen to represent the wircraft. An
important aspect of this study is the investigation of different
arrcraft models, characterized by various assumptions and approxi- ;
r~tions, in an effort to determine optimal or "near' optimal
.iosed-loop feedback strategies.

The purpose of this study and the realistic aircraft model te i

e considered is discussed in Chapter ii. In Chapter III, a

differential game problem is defined. Necessary and sufficient

Rrace?

conditions for a solution of this prcblem are presented. Chapters

4',

7 thru VII are concerned with the solutions to the pursuit-evasion :

Zferential game problems characterized by different aircraft models. - ?

s+¢ solutions and control laws derived in these chapters are applied

Afmnd

1» twe realistic problems in Chapter VIII. A closed-loop control

Sk

P

. for application with the realistic aircraft model is synthesized

24084 3m

aad discussed in Chapter IX. Conclusions and recommendations are

presented in Chapter X.

AN Ll st PACE L50ha 222

1t is believed that there are two main contridbutions resulting

from this research. For the first tiwe, & realistic aircraft

PO SETIE, Y

pursuit-evasion problem is presented and solved. The solution to

Ldaado

; this prcblem has important application in the areas of aircraft 3
-- design and performance, and aircraft tactics. The second contribution
is the demonstration that reasonable solutions to differential game :
problems can often be obtained through analysis of simplified models.

it is believed that this differential game modeling approach can bz

etk etk A ke, AR engil AL
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applied to &2 mch larger class of differential game probiems involving

realistic aircraft models.
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1. LOaTMERT UF THE PROBLEM

. puse ot vis.ertation and Approach

The purpose of this disscrtation is to solve the two-aircraft

v+ ocuir.evasion differential game and to obtain optimal closed-loop
rrol laws or strategics for the two aircraft. The extent to
-ptinal closed-loop strategies can be determined is highly
iut on the dynamics chosen to represent the aircraft. In the
.. optiwal feedback solutions cannot be found, '"near" optimal
o arneimately optimal feedback strategies are sought.
in approaching this task, a standard aircraft model is defined.
Aapplication of the necessary conditions for a saddle point solution
.1, . two point boundary value problem, for which closed-loop
t iaus could not be found. Open-loop controls and solutions
tained, however, by means of iterative numerical techmiques.
in. Step is to determine what simplifications can be made to
. ward wodel dynamics so that closed-loop strategies can be
vined. Three simplified aircraft models are considered and
... s=d-loop strategies are obtained for each.
:t is discovered that the optimal paths for the differential
-.ie problem solutions with the simplified models exhibit similar
v rocistics to the optimal paths obtained for the standard
+. The similarity of solutions suggests a method of synthesiz-
17 < 1eedback control law for the standard model. The optimality of
. .ynthesized control law is evaluated by formulating a one-sided
‘rontial game or optimal control problem in which the path of

arouer is determined through application of this control law
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while the path of the evader is optimized against it.

Differential Game Problem

The pursuit-evasion problem is to be formulated sas a two player,

s LISt e | s
:a

zero sum, perfsct information diffevintial game. The game is assumed

to take place in the vertical plane and terminates when the tarminsl
manifold defined by

RV A52
TN T

Htf.s_(tf)]-'r-tf-o

i . is reached. T is a fixed specified time, t £ is the time when the

? A terninal manifold is reached and x (t f) is an n dimensional vector

\ ; | : % representing the state of the game cvaluated at the terminal manifold.
] The range (R) between the two vehicles at teraination is the payoff

\ i S and is denoted as J. It becomes obvious, then, that in this pursuit-
| evasion game the evader will strive to maximize the range at termina-
| : " 3 \ tion and the pursuer will want to minimize R at termination. Thus,

| ; : k one player's gain is the other player's loss. Such games are referred
to as zero sum differential games. The game is assumed to be a game

of perfect informstion, where each player (aircraft) knows the present

state of the game x (t) along with the dynamics and capabilities of
! his opponent.

Aircraft Dynamics

The following assumptions are made in regard to the aircraft
dynamics:

P AR L

, (2) The aircraft are considered to b¢ point masses.

(b) The ecrth is flat and the acceleration of gravity is

constant.

4
.
]




(c) The thrust is constant and tangent to the flight path.

e oA

k: {d} The aircraft weight is constant.

i light of these assumptions the aircraft equations of motion

X =Vcosy

e
it

V sin y

E
L

(G/W) [(T - D) cos vy - L sin y)

<l
L}

h (G/W) [(T -D) siny+ Lcos«v] -6

¢y is defined by

-1
Y = tan (Vh/ Vx)

denotes the horizontal distance, h the altitude, Vx and V. are the
; h components of velocity V, y the fiight path inclination, W
. ~oight, D the drag, L the lift, T the thrust and G the acceleration

T yrovity. The forces acting on the aircraft are shown in Figure 1,

o v

Sons mammeen

Figure 1. Aircraft Forces
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The aerodynamic forcss are defined by

2
Dei/2 V SC , r.-x/zpvzscL

where o is the air density, S a refe'rence area, CD the drag coeffi-
cient and CL the 1ift coefficient.

In general, (Ref {11]), CD and CL are functions of the angle of
attach a, the Mach nunher M and the Reynolds number Re with the

functional relationships

CD = CD (a, M, Re) . (!L = CL {a, M, ko)

For angles of attack below the stalling point a ~an be eliminated
from the above relstionships to yield

Cn = CD (CL, M, Re)

which is called the drag polar. For relatively constant values of M
ané Re the dependence of CD on M and Re can be neglected. If the
assumption is made that the drag polar is parabolic with constant

coefficients, the drag and 1ift coefficients satisfy the relationship

2
CD.CDO’ RCL

where cm is the zero-1lift drag coefficient and k the induced drag
factor. The assumption that the drag polar is parabolic is in many
cases a good approximation to the experimental polar. Its accuracy
depends on the 1ift coefficient as well as the aircraft configuration.
This approximation is extremely useful in anslytical work and is
therefore widely used.

The additional assumption of constant dynamic pressure ((=1/2p Vz)
is made. This assumption is not severe for the pursuit-evasion game

where velocity and altitude changes are minimal. This leads to the




o

i 67-1

o ke Aiide

t .« ion of motion which are referrved to in this study as the standard

-0 (7 ift model.

J.CSBV =V cos vy
x
};-V = Vsiny
h
Qs/mE, -xc¢ 2) cos ¢ sin vy)
voB - - sin
x T L Y 5 Y
. 2
vh = (Q S/m)[(CT -k CL ) siny+ CL cos vj - G

Tore CT is a coefficient formed from Q S CT =T-Q8S CDO'

~cc2leration Vectograms

fn {Ref [10]) Isaacs introduces the concept of a vectogram to
- .~te as a function of the state of the game the allowable choice

antrols for cach player. For example, simple planar mot.on with

»he velocity direction as the control can be depicted by the circular

‘arram shown in Figure 2,

2 s

¢ (VELOCITY
DIRECTION)

Figure 2. Circular Vectogram

The concept of control vectograms has been a convenient one
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during this study becauss it provides a visual description of the
force relationships of the problem. For this study, the definition
of a vectogram is modified to include both the thrust and aerodynsamic
forces acting on the aircraft. Gravitational forces are not included.
The acceleration vectogram for the standard aircraft model is shown
in Figure 3. -

From a vectogram point of view, the differential game probiem
can be viewed as the problem of deternining how to employ the avail-
able forces in crder to best pursue or evade the opposing player. It

is obvious that a continuous compromise or tradeoff bdetween force

PARABOLIC DRAG POLAR

Figure 3. Acceleration Vectogram for Standard Aircra€t Model

A
o
4
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2.

magnitéde and direction must be made. The problem of determining how

Vo

to employ the available forces is difficult because the force or
acceleration magnitude available in a given direction varies with the
aircraft's flight path direction. The approach taken in this study

is to consider various simplifications of the standard aircraft model
acceleration vectogram that will yield a problem for which closed-loop

solutions can be found.
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III. THEORY OF DIFFERENTIAL <AMES

The pursuit-evasion problems treated in this study are formulated
as fixed time, zero sum, perfect infoma.t‘iott differential games. The
purpose of this chapter is to define mathematically this class of
differential cames and to present necessary and sufficient conditions
for solutions to these problems. The basis of this chapter can be

found in References {1}, [2], and [4].

Mathematical Formulation

The differential game problem treated in this dissertation is

defined by the dynamic system

x=f (x,u,v,t) ; sttol-z_zo (1)

where x is an n-vector, u is the scalar pursuer control and v is
*
the scalar evader control. The goal is to find the controls u and

v' such that
vix{t),t) =0

and the performance criteria

t
Jerme)e)e L u v @
Y to
satisfies
* * * *
Ju,v)<JMm,v)<J (uv) 3)

* *
u snd v can be found, the pair (u., v.) is called a
* *
saddle point of the game and J (u , v ) is called the value of

the game. Eg (3) is equivalent to the following equations

n
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Ju, v)

]

]
Min J (u, v )
ugy

b

Max J (u~ v) (4)
vey

[}

Min Max J (u, v)
uEl vev

where U and V are admissible sets for u and v.

Eq (4} and hence tihic existence of a saddle point aye dependent.

on the condition that

Min Max J (u, v} = Max Min J (u, v)
utl vev vEV ugly (5)

Mecessary Conditions

A necessary condition for a saddle »oint solution of the

differential game problem defined by Eqs {1), (2) and (3) is that
the Hamiltonian defined by

H(t,_:_c_,l,u,v)a_l_r_f_*l. (6)
must be minimized over the set of admissible u and maximized over
the set of admissible v and that

H, = Max Min H = Min Max H

v u u ¥ )

A is the n-dimensional costate vector and the costate differential
~quations are
AT = -H (%)
- X
The transversality conditions are given by

T
S CPRE N )

Eq (7) implies that the maximization and minimization processes

commute, which is not generally true. It is true, however, if H

12

P e

it Hl
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can bo separated into two functions, one of which is independent of
u and the other independent of v. For example
H(t, x, A, u, v) = H1 (t, x, A, u) + Hz (t, X, A, v)

For the problems considered in this dissertation £, L, and hence H
are separable. This insures that the minimizing u and maximizing
v provide a saddle pcint of H at each point on the optimal path.
Unfortunately, separability of H does not imply separability of J
and, therefore, solutions to the two point boundary value problem
given by Kgs (6), (8), snd (9), may not necessarily satisfy the saddle
point conditions given by Eq (3). A procedure for verifying the saddle
point conditions are given in the section on sufficient conditions.

Necessary conditions require that the Hamiltonian be minimized
over the set of admissible u and maximized over the set of admissible
v. If H is linear in the control variables and if 9H/3u and 3H/3v
are equal to zero the Hamiltonian is independent of u and v and it
is not possible to maximize or minimize H with respect to these
controls. Pxtremal arcs on which 3H/3u = 0 or 3H/3v = 0 are called
singular arcs. In (Ref [1]), Anderson presents the characteristics
of singular solutions in two-person, zero sum differentisl games
including & set of necessary conditions for the optimality of the
solution. Defining Sp £ 3/3u, necessary conditions for the existence
of 2 singular solution are that S (x, 1) and all time derivatives of
sp #ust vanish. Successive diffb:entiatioa of S generally resuits
in an equation which explicitly contains u which allows the determinsa-
tion of the singular control u,- Similar statements apply for the
evader when S = 3H/3v = 0. The necessary conditions for the singular

e
control ug to minimize J and for vs to maximize J are

i3
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R
q as
Gna | ___ P >0
u Ldtzq
and N (10)
N
a%s
-0D%3_ ]l <o
v dtzq

where 2q is the order of the derivative which explicitly contains
u and v. No sufficient conditions for optimality cf singular solutions
are available,

It was previously stated that the optimal sclution to the differ-
ential game problem is the pair of controls (u', v.) which provide a
saddle point of J, If the pair (u', v') is given as (u. ), v. (t)),
one speaks of an open-loop solution. If the controls are expressed
as functions of the instzntaneous state and time

u = k (x, ©)
.
v o= kv (x, t)
one has what is known as a feedback or closed-~loop control law.

The importance of the difference between open and closed-loop
controls in differential games can be made clear by returning to
the inequalities of Eq (3). The second inequality can be considered
in two ways depending on how the minimizing player considers the
naximizing player's controls to be expressed. We can have either

min Ju, v ()] =J [u (t; x5 to):'v (t)])

or

14
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minJ [u, k (x, )] = [u (& x,t)k (x t)
\ 4 6 o \ 4

The latter requires that u' be optimel against an opponent
whose control is produced in a closed-loop manner implying that
v can immediately take advantage of any non-optimal play made by
v. It is obviocus, therefore, that in differential game problems
feedback strategies must be considered. If the open-loop problem
can be solved analytically, the open-loop control can be computed
instantaneoiisly and continuously for any initial state and hence
generate an optimsl closed-loop control.

. If one assumes the existence of strategies

Wk (x,t)andy =k (x, t)
w = v =

that provide a saddle pcint of J, the following significance to
Eq {(3) can be given. If the maximizing player uses his optimal
strategy, he is guaranteed a payoff at least equal to the value
J (u'. v.) and if the minimizing player selects his optimal strategy,

he guarantees that his opponent will get a payoff no greater than

the value.

Sufficient Conditions

In the previous section, it was pointed out that solutiens to -

the two point boundary value problea given by Eq (6), (3), and (9),

do not necessarily satisfy the saddle point conditions
J (u', v) <J (u., v.) <J (u, v.)
Verification of the saddle point conditions can be accomplished
dirsctly by verifying the inequalities of Eq (3) separately through

the consideration of two optimzl control probiems. Ths first

15
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inequality can be verified by solving the probleam

L
J,v)=mnind (u v)
u
*
where v may be given in open or closed-loop form. The second

e

: irequality is verified by solving the problem

3 Jw', v) smaxJ (u, v)
A v

where u" may be expressed in open or closed-loop fors. The saddle
point is establisned if u’ and v* from both problems are the same.

Sufficient conditions for a saddle point solution for this differ-

ential game problem are discussed in Appendix A. When u and v' are
interior controls the fellowing conditions are sufficient for (u., v')
to provide a saddle point of J.

(1) The strengthened Legendre-Clebsch conditions:

Huu >0 ﬁvv <0

(2) The non-existence of a conjugate point on (to, th

oof i pwre oy

for an accessory minimax problem.

T

PR Y st

A ¥4
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IV. PURSUIT-EVASIiON DIFFERENTIAL GAME - STANDARD AIRCRAFT MODEL

A differential geme problem using a reslistic aircraft model was
discussed in Chapter II. The purpose of this chapter is to obtain
open-loop solutions to this differential game problem using the

necessary conditions given in Chapter III.

Statement of the Problem

The problem is to determine a saddle point of

2 2.1/2
J{t)=R(t)=[(x -x * -h)
£ *) { e 1,) (he ' lt-tf
subject to
L] - v
» xp
h =V
P hp (11)
* 2
vV =B [, ~k C Vcosy -C siny]
xp p Tp p Lp p Lp P
* 2
v =D f(C. -k C sin +C cos -6
hp p t TP o Lp ) " Lp 'p]
x =V
[} Xe
h, * vhe
(12)
° 2
v =9 C - -
o Do e, k, cu ) cos v, c“ sin y.]
* 2
v c - -~
. - De {( e ke CL. )} sin 'r. * CL. cos 7‘] G
where
-1
y stan (V. /V )
P hp xp
17
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- -1
yc £ tan (Vhe/ ch)

and the subscripts p and e refer to the pursuer and evader, respec-

tively. The final time (tf) as well as the initial wues of the state

variables are to be considered specified. C. _and C

i Le are the controls
for the pursuer and evader, respectively. Thay ars beamded by
Cl.p min — CLP < ci.p T4
13)
CLe min cl.e hd CLe nax
-
For convenience DP and D‘= are substituted for (Q Slh}' amd (Q 3/-)0. -
D, C

, , D_C i .
p’ C1pr De ('Te are positive constants

Necessary Conditions

Applying necessary conditions for a saddle peimt sclution, the

Hamiltonian is

= - 2
H xxe vxe + xhe vhe * xv” De [(c'l‘e k. C“ ) cos Ye.

. 2
- cLe sin ye] + xVhe De [(c'l'e - ke Cw) sin Y,

- v
+CLecosya] x%ec+xxp ,’+A~\§.

2
+3. D [(C.. -k C Ycosy -C. simy]
Vxp p[(TP p P Ip P
2 .
k C Ysiny ¢+C cosy] -1 G
Lp P p Vip

3
The Hamiltonian is to be minimized with raspect 2o CL’ and

Le subject to the constraints giwen by

+2 D [(C_ -
Vhp p = %

nmaximized with respect to C

Eq (13). If the minimizing and maximizing centrols awe on the interier

of their admissible sets, it is necessary that

e

18
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0
an/acbp =0 aﬂ/ac“ =
and
2
2 Wi, 250 e 2o
Lp ~ Le —
Solving aH/acL = 0, the following expression for ELp is obtained.
. P
C s=tan(8 -v)/ (%)
Lp p P r
vhere
-1
B =tan (A /1, )
P Vhp  Vxp

Similarly for e, an/acL = 0 yields
e

€ =t (s -v)/ ()

where

-1
B = tan A /A
e ¢ Vhe Vxe
c
Lp
provided that

and El.e are minimizing and maximizing controls respectively,

2 2
9 H/aC s -2k D [siny 2 ¢cosy A ]3>0
Ly pp[ p Vhp v.

P
and (14)
azn/ac ? 2k D (st A cos A 1«0
2 - n L 4
Le e e Ye Vhe Ye Vxe
The control c;p that sinimizes H subject to Eq (13) is
¢ € »>¢
Lp max Lp Lp max
. {
c [ c <€ <C¢C is
p Lp Lp min — Lp — Lp max (35)
c € <¢C
| Lp min Lp ~ Lp min

19
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ontrol CL° that maximizes H subject to Eq (13) is
¢ € >c
Le max Le Le max
*
= C c < <
CLe Le Le min — 6l.e - c!.e max
c € <¢C
L Le min Le Le min
uler-Lagrange or costate equations are
A =0
xe
A =0
he

= -y -2 D {(C

2
-k C v
Ve xe Vxe ¢ Te e Le ) 3(cos Ye)/a x&

-CLe 3{sin ye)/avxel -4 Vhe l)e [((ITe

-k 2) a(siny )/av  + C_ 3(cos vy )/3V ]
e xe Le ) xe

e cl.e

: 2 B
A =z A - 2 1] C -k C 9(co o
Vhe he Vxe e [« Te e Le ) 3(cos Ye)' he

-CLe 3(sin ye)lwh‘] - xVhe D, [(c'l'e

2
-ke cl.e ) 3(sin ye)/avhe . cLe a(cos ye)/avhc]

2
3(cos y }/V = sin2 vy/[V +¥ 2]1/2
e xe e xe he

2
3(sin v )/3V = -siny cosy /{V eV 211/2
e xe ] e xe he

3(cos y)Y/aV. = - siny cos vy /[V 2 +V 2]1/2
e he e e Xxe he

e 2 2.1/2
9
(sin Ye)/avhe = CoS yellvx. + vhe }

20
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m<A -1 D [€C -k C 2) a(cos v )/av
vxp xp Vxp p Tp p LpP p X

-C  3(sin v )/ -2 D C
Lp( Yp xp] Vhp p“Tp

2
-k € 3(sin JV +C  3cos ]V
» LP) ( 'rp) x * Cip ( vp) xpl

(19)
. 2
A s -} - D C -k C %) 3cos /v
e " e " N % (0 G LRI
-C_ a(sin y )/ -2 D {(C
Lp ( Yp hPl Vhp P t Tp
2
<k C a(sin V. +C 3{cos W,
p Cip ) 2080 T/, € ateos v /v, )
where the partial derivatives are defined as in Eq (18) with the
subscript e replaced by p.
The transversality conditions defined by _A_T (tf) =R are
x
_ltf
= . = - R
A, (g xxp (t) = (x, xp)/ e « e,
A = =) t = -
he (tf) hp ( f) (hc hp)/R lt = tf
A (t)=0
Vxe f) (20)
g9
1\lhe (tf) )
A t)=20
Vxp ( f)
A Vhp (¢4 f) =0

Problem Solution

The problem stated above is a two-point boundary value problem

21
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(TPBVP). Because of the non-linearity of the problem, no closed
form solution is known. Open-loop solutions can be ostained only
through the use of pumerical iterative techniques.

Trajectorics satisfying the necessary conditions for a saddle
puint solution to this problem may be generated by assumirg terminal
state conditions

x (¢) = Xx
~f
—tf

and simultaneously integrating backwards in time the state differentiul
cquations given by Eqs (11) and (12) and the costate differential

cquations given by Eqs (17) and (19) with conditions at t_ given by

f
£q (20). The saddle point controls, C;P and C;e are given by Eqs (14)
and {15). Thes2 trajectories repiresent open-loop solutions to the
differential game problem where the specified initial state conditions
X (to) correspond to a point x (t) on these trajectories and the fixed
flight time of the game is equal to tf - t.

Figures 4 and 5 show two solutions obtained in this manner. The

data used to obtain the solution shown in Figure 4 is

X, (tf) = 33383 feet xp (tf) s 28262 feet
he (tf) = 18808 feet hp (tf) = 27278 feet
vxe (tf) = 603 ft/sec pr (tf) = 740 ft/sec
Vhe (tf) = -996 ft/sec Vhp (tf) = -1224 ft/sac
De = 122 ft/sec2 DP = 192 ft/sec2

CTe = .06 CTD = .04

22
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The trajectories in Figure 4 can be viewed as the solution to the
differential game problem where the initial position of the pursuer

is above and behind the evader.

The data used to cbtain the solution shown ir Figure 5 is

x ({t.) = 35000 feet x (t.) = 32000 feet
¢ f ] f
h (t ) = 30000 feet .h {t ) = 25000 feet
e f p £
Vxe (tf) = 688 ft/sec pr (tf) = 727 ft/sec
v t 580 ft/sec v t ) = 612 ft/se
he(f). / hp(f) /sec
De = 160 f‘t/sec2 D =175 ft/secz
P
CT‘ s .06 ch = .04
k =.5 k =.5
e P
C <1 Cc <1
le I lc, |

In the differential game problem corresponding to this sclution, the
pursuer is initially behind and below the evader.
These solutions will be used as a comparative base for the

solutions obtained using the simplified aircraft models which are

analyzed in the next three chapters.

25
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V. PURSUIT-EVASION DIFFERENTIAL GAME - STATIC MODEL

In Chapter (I, the pursuit-evasion differential game problem
was cast in terms of the acccleration vectogram associated with the
aircraft model. The difficulty in solving the differential game with
the standard aircraft model resulted from the parabolic shape of the
vectogram and its orientation with respect to the changing aircraft
flight path direction.

In this chapter the problem is simplified by assuwing that the
crientation of the vectogram and the aircraft flight path direction
ari fixed. This is cquivalent to a static aircrafc analysis with a
<constant flight path angle. The acceleration vectogram for this model
is the same as Figure 3, ecxcept that the flight path inclination angle
.s fixed.

The purpcse of this chapter is to solve the pursuit-evasion
differential game problem with the static =ircr»ft model and to discuss
the application of the resulting closed-loop control law to the

standard aircraft model.

Statcaent of the Problem

The problem is to determine a saddle point of

- , Y L p y211/2
J) =R =[x - x)" s (- h) lmf

svbject to

p hp =1)

.

2
vV =D (€ -k C “Ycos g -C sin g}
xp. p Tp p Lp Lp

26
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2
V. =D C. -k C sing+C cosg] -G
hp P“TP » Lp) 14 Lp ]

X =YV

e xe
h =V

e he (22)
v

2
xe = De [(cTe - ke CLe ) cos ¢ - CLe sin y]

2
Vpo = 0 [y, - k € ) sinyeC cos v] - G

where the subscripts p and e refer to the pursuer and evader, respec-

tively. £ is the specified constant flight path angle for the pursuer

and ¢ is the specified constant flight path angle for the evader. The

final time (tf) as well as the initial values of the state varjables

are to be considered specified. CLp and cLe are the control variables

for the pursuer and evader, respectively. They are bounded by

ch min f'ch S'CLP max

(23)
Le min icLe —<-cLe max

ave positive constants defined as in Chapter IV.
p Tp e Te

Necessary Conditions

Applying necessary conditions for a saddle point solution, the

Hamiltorian is

2
H= 2 v A \' D (C -k
xe Xxe * he he * AVxe e (e Te e cLe ) cos ¥

. 2, .
- cLe sin ¢] + the De [(cTe - ke CLe ) sin ¢
+C o - G v Vv

e O M A A Ve e Y

27
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2
A D [(C. -k C ")costg-C sin¢
Vxp p [ TP p Lp Lp :

2
+ A D [(C -k C “)sing+C cos &} -2 G
Vip p Yp p Lp Lp Vhp

The Hamiltonian is to be mirnimized with respect to CL and maximized
with respect to CLe subject to the constraints given by Eq (23). If
the minimizing and maximizing controls are on the interior of their

admissible sets, it is necessary that

3H/3C = 0 QH/C =0
Lp Le

and

2 2 2 2
3 H/3C >0 9 H/AC <0
/ Lp — / Le —
Solving aH/aCLp = 0, one obtains

C_=tan (0 - £)/(2k) (24)
Lp P P

wvhere

-1
9 = tan A A 25
o ( Vhp/ vXp) (25)
Similarly for the evader, an/ac!e = 0 yields

ELe = tan (0e - W)/(zke) (26)

where

0 = tan {

. AVhs/ @7

A
Vxe)

C and C are minimizing and maximizing controls respectively,

Lp Le
provided that
2 2
a H/3C = -2k D ([sing ) +cos £ A >0
/ Lp A p[ Vhp prl_

and

28
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2 2 .
H -2 D i A +cos y A 0
QH/C "= -2k D [sinya e ¥ Mol S

*
The control ch that minimizes H subject to Eq (23) is

R e

g |22
-, pag oy e ins gy RN HENT ,’.,:-fp,.gv'\;f,:‘,}({“lﬁ%f@?;f\« %
R L A .

P — r
i C cC »>C
Y Lp max Lp Lpmax
*
4 c C C <C <C 28
Lp * Lp Lp min — Lp — Lp max (28)
_cl.p min cl.p = ch nin

*
and the control cl.e that marimizes H subject to Eq (23) is

-

c ¢ »>c¢C
] Le max Le Le max
‘ ® -— -
P e ” | Cee Cle min < %le 2 Le nax (29)
€ <¢C
Le min Le Le min

The cestate cquations are

A =0
xe

[ 4
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Me (tf) . - xxp (tf) = (x, - xp)/a |t.t

Mo (8 = - A

" p (19 = (g - BO/R e

\
/ % The transversality conditions are
{ h

Problem Solution

Integrating the costate equations and applying the transversality

conditions yields

A = - A t -t
xp t) xp (tf) ( P )

v
; Mg 77y, € -0 (30)

Mxe (87 "2 (B9 (£ - 1)

Mhe (7 7 X UP (- 0

From Eqs (30) and the transversality conditions

[AVhp (t)/)\v‘!p (t)] = xhp (tf)/xxp (tf)

= (he - hp)l(xe - xp) Itat‘

and

- X =
DVhe (tlllvxe (©)} ne (tf)“xe (tf)

30




o>

3
:
?

14
4

FISVINN

S Sl

R R L A R L > Sk frs T P Ty ey

Gy R - x)

Comparing thege equations with Eqs (25) and (27) shows that
0 (t) =0 (t) =0 (t)
e p f

where 9 is the angle measured from the horizontal to the line of sight

between the pirsuer and evader at termination. Since 0 and 0 are
e P

constant functions, the controls C:P and C;e are éonstants from Eqs
(24), (26), (28) and (29).

Integrating the state equations Oxe and pr and combining the
resuits yields

vxe (t) - pr (t) =V (to) - pr (to)

xe (31)

* 2 *
+{D [(C -k C -c i -D f(C
{e[(,u . l'e)ccsw l'esm*] l,[(,l,p

-k C' 2) cos £ ~ C'
P Lbp

Lp sin £]}(t -~ to)

Integratinrg Eq (31) yields
x (t) -x (t)=x (t)-x (€)+(V (t)-V ()] (t-t)
e P e o© P o© xe o xp o o

*

Le sin ¢] (32)

* 2
+ {D C -k C 0 -C
e (« Te e Le ) cos ¥
]

2
Lp sin €])(t - to) /2

* 2
-D [(C. -k C ")cosEg-C
P ip p Lp

The following equation is similarly obtained for the h comporents of

the state equaticns

he (t) - hp (t) = he (to) - l\,P (t)+ [Vhe ) - Vhp (to)l(t - tol

. 2 *
D - 33
+ { e [(cTe ke cLe ) sinwv + CLe cos ¥) (33)

*

-D I(C

2 * 2
[ -k C sin £ +C_ cos £}t -t )/
p ™ P l-p) Lp X o 2
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4.
Dividing Eq (33) by Eq (32) and evaluating at t = ¢t ¢ yields g

p (€1 - ¢ )

tan 0 = {.he (to) - hp (to) + [Vhe (to) - Vﬁ

L 4

* 2 . *
{De [(CTe - ke ch ) sin ¢ + cLe cos v}

*®
2 .
D f(C -k C %) sintg
p To p Lp

(34)

+

* 2
CLp cos E}}(tf - to) /2 {;e (to) - xp (to)

*

[Vxe (to) - pr (to”(tf - to)

+*

02 *
- c - i
{De [(CTe ke Le )cos y - C_ sin y)

Le

*

x 2 2
- -C i -
Dp [(c'!'p kp CLp ) cos £ Lp sin e)}(tf to) /23

Eq (34) is a transcendental equation with the unknown parameter 0
since C:p arid C;e are functions of 0 only and all state components

are specified at to. This equation can be solved for 9 using a
digital computer. The detevmination of O allows C;P and C;e to be
computed and therefore effectively completes the solution to this
differential game problem. The ability to continﬁdusly determine the
optimal coatrols as a function of the present state of the problem and

the time to go constitutes a closed-loop control law for this differ-

ential game problenm.

Pseudo-Dynamic Application

The differential game problem solved in this chapter is based on
a fixed orientation of the aircraft flight path. A possible applica-
tion of this solution to the standard model problem of the previous
chapter would be to solve the static problem at each integration or

specified time step as if the flight path angles of the aircraft were

32
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i
e -
i 13 to remain fixed. After determining the corntrols C  and cLe in this
=
) ! § manner, taey would be applied to the standard model dynamics. This
i
i 2 procedure would be a closed-loop control law for the standard model
E ¢
B , problem. Results of the application of this procedure are presented
E in Chapter VIII.
[
2
!
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Vi. PURSUIT-EVASION DIFFERENTIAL GAME - ZERO INDUCED DRAG MODEL

In this chapter another aircraft model is considered. This model
is characterized by the simplification of neglecting drag due to lift
(induced drag). This simplification is accomplished mathematically
by assigning the value zero to the induced drag factors k and ke in
Eqs (11) and {12). A further simplification is introduce: by neglect-
ing gravitaticnal forces. The improvement of this mcdel over the
static model is that the flight path orientation is not fixed (y # 0).

The acceleration vectogram representing this model is shown in Figure

6 und is termed the zero induced drag model.

—

Cr

R
Figure 6. Acceleration Vectogram for the Zero Induced Drag Aircraft
Model
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The purpose of this chapter is to solve the pursuit-evasion

differential game with the aircraft modeled as above.

Statemesnt of the Problem

The problem is to determinz a saddle point of
2 1/2
J(t)=R(t)=[(x ~-x +th -h
(¢ =R () = L - )" o (v - n 112
f
subject to the state cquations

x =¥

(35)
v p_ {C_ cos - C sin
xp = Op Cqp €05 ¥p - Cpp sin v}

'} D {C_  sin + C,_ cos
np = %p { - Y Sy Yp]

=V

he * vhe

(36)

D -C i
e R [CTe cos Ye Le sin yel

Cc
he De [CTe sin Y, *+C . cos ye]

where

-1.
5 tan (Vhp/pr)

"

-1
Yo Ttan (Vv )

and the subscripts p and e refer to the pursuer and evader, respec-

tively. The final time (tf) as well as the initial values of the state

. QC’D’
variables are specified Dp p’ De cTe are constants defined in

35
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Chapter 1V, CLp and CLe are the controls for the pursuer and evader,
respectively. They are bounded by

<cC

CLp min Lp f-ch max

cLe min f-cLe 5-CLe max

Analysis of this problem is made easier if the state variazbles Vx and

A\

Y, are replaced by V and y where

2 2 1/2 -1
V= [Vx + Vh ] and Y = tan (Vh/Vx)

The resulting state equations are

; = V_ cos
p P T

=
]

V sin
) "

. (37)
P p Tp

<
L]

o
(]

D C /v
p P Llp p

I
]

x =V cosy
e e

h =V siny
e e (38)

ve ® De cTe

Ye * De cLe/ve
whicl. replace Eqs (33) and (36).

Jecessary Conditions

Applying necessary conditions for a saddle point solution, the

flamiltonian is

36
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H= ) vy cos +2 V sin +1
- Xxe e y? he o 1§ Ve e cTe

*A D C M . AV cos +X V sin
Ye ¢ lee “xp'p k hp p K

. *A, D C +2 p ¢ 4
S Vo p Tp YY p Lp'p

The costate €quations aye

A =0
xp

ey

a7 oo iy g " S b gars aciid S R
L g i it

[y
. 1 0 gyt
.

A =0
xe
. vo
he
i *-2 cosy - A sin Y *+X D ¢ /v 2
Ve Xe e he e Ye e Le' e
1 A =V () sin y . A cos Y )
3 ye v xe e ~e e

The transversality conditions yield

axe (t f)‘ = - xxp (t f) = (xe - xp)/R [ut

£
Ahe (tf) = - khp (t f) = (he - hp)/R {t'tf
e & =0
xye t) =0
: :‘ ' xvp (t) =0

37
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Yp 3

Minimizing the Hamiltonian with respect to ch and maximizing with

respect to C subject to the constraints on C  and C defines the
Le Lp Le

centrols
C s S >0
Le max e
C =
Le c : S <0
I Le nmin e
(39)
: s
Lp max ’ P <0
C =
Lp C : S >0
Lp min P
b
where
S = 3H/C A D /v
e / L2 * Ye 0’ e
S = 3H/C. =) DYV
P Lp v p P

However, if Se is equal to zero, the Hamiltonizn is independent
uf cLe and it is not possible to maximize H with respect to CL‘.
Similarly for 5 equal to zero, H cannot be minimized with respect
to CLp' if Se 51 Sp are zero Ov.r a non-zero time interval, a
singular control in cLe or CLp may occur. Necessary conditions for
the existence of singular solutions were presented in Chapter III.
For a singular control in CLp it is necessary that Sp and all its
time derivatives vanish. Similarly, for a singular control in cLe’
+% is necessary that se and all time derivatives of S‘ vanish. These

conditions are nuw examined to determine if singular solutions exist

for thi. problenm.
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% Setting sp = 0 yields

S =sA D/ =0
P YP p P

which implies that A = 0
©YP

Setting ép = 0 yields

. . . 2
S =D [A /N -2 VNN =0
P p WP vppp]

which implies D A /V = 0 since A = 0. Substituting for A_,
y Y P P

Yp

D [A sin - A cos =0 40)
b [ xp Yp - vol ¢

-

which implies that tan y = X /A along a singular arc
p hp xp

Setting S =0 yields
P

§ao A _cos Yy +#)% ciny
p " "p Tp Dap 08 ¥ ¢ By sin W]

+D [i sin ¥ -i cosy)] =0
P xp p bp J

D v fx cosy +2 sinvy)}s=¢
PP X p hp P

P C.L [A cosy +2 siny]}/V =0
lp " xp P hp P P

since Axp and xhp are zero from the costate differential equations.

.

For S to be zero, either ch must be zero or
P

[A cosy ¢ siny)]=0
xp p P

Assuming [A cos vy ¢+ A sin v ] equals zero implier that tan y =
xp p bhp P ®
- }'xp“hp along a singular arc. This is in contradiction with the

result of Eq (40). It is concluded that along a singular arc the
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singular control CLps is equal to zero. A necessary condition for the
optimality of this solution is that

-3 §p/ach >0 (41)

Application of this condition gives

“ 2
-§ /3C, = -[x cos y + ) sin D */V) (42)
o/ Cup T D €08 1 ¥ My SN} O /Y

To show when this necessary condition holds, transversality conditions
require

xxp (tf) - -(xe - xp)/R lt.tf

and

xhp (t) = -, - hp)/n Itatf

Defining @ as the angle measured between a line from the pursuer to
the evader and the horizontal at termination 2 t.) and ) t
xp ( f) hp ( fJ

becone

kxp (tf) = xxp (t) = - cos @
by t = A (t -sin 0
hp ( f) hp (t) = i

since A and Ahp are constants. Making these substitutions in Eq (42)
X
gives

-a§ /aC. =cos (0 - v ) (43)
P Lp ¢ P

Along a singular arc Sp = 0 requires

» siny -2 cosy]=sin{(f-y)=0
[ xp P hp P p

which implies that Yp = ¢ or Yp = @ ¢« . Substicuting Yp = O and
Yy =0 + 7 into Eq (43) yields

P -
3S/sC, =1>0 for =@
p/ Lp "p

40
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b ] and
P -
: H 28/ =-1<0 for y =0+ %
. E P Lp P
: % %_ . Therefore the necessary condition Eq (41) is only satisfied when
: &
N § Yb = 0. A similar analysis for the evader reveals that se = 0 over
; i a non-zero time interval corresponds to a singular solution with the
A 1
% singular control cLes = 0,
s The optimal controls for the solution to this differential game
4 : problem can now be given as
: C : S #0
r o Lp P
: Lp 0 3 S =0
1 p
4 (44)
1§ -
i C : S 40
* Le e
C =
Le 0 : S =0
e

wvhere ch and cLe are given by Eqs (39).

Problem Solution

In an optimal solution to this problem there are three choices

of control depending on whether S and Se are greater than, equal to,
P

or less than zerc. In order to construct an optimal solution to this
problem the allowable <equences of these controls must be determined.
The first question to consider is whether or not a singular arc

can be followed by a non-singular arc in an optimal sequence of

controls. To answer this question assume that the pursuer is on a

singular arc and applies the control CLp max’ On the singular arc

41
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the following is true.

(1) v =9
P

}' ) » =0
- P

(3) A =V sin(@-vy)=0
Y p P

: .f From Eqs (37) onc sees that the application of the control C

Lp max

causes Yp to increase so that y > @. This implies that xYp <0 and
|

t'\\ ? that A also becomes negative. In order to satisfy the transversality

2

condition Ayp (tf) = 0 the sign of xyp must somewhere become positive.

This will happen when y = -0. Physically this means that the flight
P .

. ‘{ direction of the pursuer, when AYP = 0, is in the opposite direction
|- of the line of sight between the pursuer and evader at termination.
At this point the transversality condition xyp (tf) = 0 still has not
been satisfied since xyp < 0. This implies continued application of
u 3 the control CLp nay "hich causes further rotation of the flight path
' : direction of the pursuer umtil xvp = 0. If at this point A" 0,

o the pursuer will again be on a singular arc with Yp = 0. This means

| ivlf'é that the pursuer has literally traveled a circular trajectory which
\ f' ;i obviously cannot be an optimal pursuit trajectory.

if iyp > 0 when xyp = 0 the following control sequence must be
TR considered

{ch max’ ch nin)

To show that this cannot be an optimal control sequence, assume that

xYp <0 and A _ > 0. The choice of control corresponding to Ayp <0

YB
is C . IfXx > Owhen ) =0, A will bocome positive
Lp max P P Yp .
i i itching t C . Si >0 ust be
resulting in switching to ch = Lp 2in ince xyp R Yp nust
. 42
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less than 0. The choice of C will cause y to decrease and )
Lp min P
will remain positive causing X

to become more positive. Again the

pursuer will be traveling in a circle vhich physically cannot be an

optimal pursuit trajectory. By symmetry, (CLp ain’ CL ax) cannot be
an optimal control sequence.

e e oV WY IS sy TP ??%!WH 3

¢
LAY

It is concluded that in an optimal sequence of controls a singular

arc cannot be followed by a non-singular arc. Therefore if the pursuer

is on a singular arc, he remains on the singular arc.

Having eliminated (CLp max’ CLP nin}' {CLp min’ CLp -ax}’ and the
transition from a singular to a non-singular arc as optimal control

sequences, there are three control sequences possible in an optimal

§ solution to this problem. These are

| | « or C , 01 ; (C or C ; (0
L A Lp max r Lp min bid Lp max Lp liu} '
.

ﬁ A physical interpretation of the use of these control sequences can be
| ; 3 made by an analysis similar to that used to show that a switch from a

singular arc to a non-singular arc cannot be made. Consider aa initial

g - ' value of y < Q. This implies that

.
2 .
\ -3

A =V sin(@-y)>0
. 3 w0 k:

To satisfy the transversality condition A (tf) = 0, xyp must be

P
negative for which the choice of C. = C is the optimal contrul.
Lp Lp max

max rotates the flight path direction of the pursuer
toward 0. When Yp = 0, the pursuer switches to the singular control

The control CL

chs = 0. For an initial value of Yp > 9, the optimal control is
c

Lp min and the flight path direction of the pursuer is again rotated

toward the direction 0, Similar srguments and statements cam be made

in regard to the optimal control sequences for the evader.
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The main point of this discussion is that the optimal solution to
this problem involves the employment of maximum or minimum control to

to rotate the velacity vector of each vehicle into a prescribed

'Y *
direction after which a singular CLp = 0 or CL°

control. The trajectories of the pursuer and evader are characterized

= 0 is the optimal

by a hard turn followed by a non-turning arc. The condition when both
aircraft are on singular arcs occurs when the flight path directions
of the two aircraft are colinear. This can be shown as follows.

On the singular arc, the state equations reduce to

x =V cos 0 X =V cos 0
P r e e
h =V sin h =V sino
p P e e
V =D V =D C
P p Tp e e Te
Yp:O yeso
Integrating ; and h yields
P p
}f
x (t)=x (t) + cos O vV dt
P fJ P t
t
h (t) =h (t)»sino[fv de
p f P t P

and similarly for the evader

t
3
x (t) = X, {t) + cos 0 { v, dt

t
£
he (cf) =h, (t)#sinO{ v, at

Dividing [he (tf) - hp (tf]] by [xe (tf) - xp (tf)] yields

44
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te e
h (t) +sin0 [°V dt -h (t) -sino [° V_dt
tan 0 =

te tf
x, (t) + cos o,{ v, dt - xp (t) - cos 0{ Vp dt

which is equivalent to

tan 0 = [h (2) -h_ (£))/[x (t) - x (t)] (45)
[ P e 12

This implies that the line of sight direction between the vehicles is
a constant and equal to the terminal line of sight direction when both
vehicles are on singular arcs. This proves that the flight path
directions of both aircraft are colinear under these conditions.

Because of the special conditions associated with the singular
arc solutions, initial conditions generally require the initial employ-
ment of maximum or minimum control. The closed-loop solution to &
general problem can be constructed as follows:

(1) For the evader, choose the control CLe max or cLe ain
that causes the evader to rotate its velocity vector
away from the pursuer. Holding this choice of control
constant, integrate a turning trajectory for the evader.

(2) For the pursuer, choose the control CLp max or cLP win

that causes the pursuer to turn in the direction
necessary to achieve a tail chase condition. Holding
‘ this choice of control constant, integrate a turning
trajectory for the pursuer.
(3) The pcints of tangency between the two trajectories
identify the switching points for each aircraft. The

slope of a line drawn between these two points identifies

the final line of sight direction 0. The geometry of

45
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this solution is shown in Figure 7. If points of

tangency do not exist due to the ability of the evader
' to turn tighter than the pursuer, the aircraft does not
switch from the turning controls to the singular
controls. The hard turn controls are then maintained

over the compiete trajectory.

SWITCH POINT
FOR P

\Y

Figure 7. Switching Point Geometry fer Zero Induced Drag Control Law

This is un open-loop solution. However, it can be provided on an

instantaneous and continuous basis thereby producing a closed-loop

strategy. It is interesting to note that even though the problem

46
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was presented as a fixed time probiem, the same solution applies to
the mininum time intercept problea.

This problem was formulated neglecting gravitational Yorces sirce
this is sufficient to prevent the synthesis of closed-loop controls.
However, it is felt that this problem and solution is of value since
it can be argued that gravity effects both vehicles almost equally
providing velocity differences are not too great. The most significant
assumption related to this model is the neglecting of induced drag.
Because of the distinctive two arc solution of this problem, z
correction for induced drag can very easily be introduced. This
correction consists of subtracting from the net thrust CTe and Tp)
an additional drag value corresponding to that normally induced by
the value of C or C . This additional term would be

Lp max Le max
required only during the turning portion of the solution.
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VII. PURSUIT-EVASION DIFFERENTIAL GAME - LINEARIZED DRAG POLAR MODEL

In the previous chapter the zero-induced drag model was introduced.
it was pointed out how the drag due to lift or induced drag could be
taken into account in that solutior to the differential game problea.
{n this chapter, the aircraft model is an improvement over the zero-
induced drag model in that drag due to Iift is considered directly.
The difference between this model and the standard aircraft model is
the choice of a linearized drag polar instead of the parabolic drag
polar. If gravitational forces are neglected, a closed-loop control
law can be obtained for the pursuit-evasion differential game with the
linearized drag polar model. The vectogram for this model is shown in
Figure 8.

The purpose of this chapter is to solve the pursuit-evasion

differential game with the linearized drag polar aircraft model.

Statement of the Problem

The problem is to determine a saddie point of

2 1/2
J)=RrR(@E) =[x -x)+m -n¥)
f) f) e P e ptst
f
subject to the state equations
x =V
p
h oV
P hp
. | | (46)
V. =D C. -k c cos - C _ sin
xp ™% (G w5 1 Cp D0~ G Yp]

VvV =D C -k C Ysiny ¢C cos vy}
hp P[(Tp p'lopl p Lp p

48
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Fignre 8. Acccleration Vectogram for the Linearized Drag Polar
Aircraft Model
x =V
e xe
h sV
. he (47)

- ) -
V“ . l)° [(c,‘,e ke | Cre ) cos 7‘ Cu sin y‘]

Vhe = Dg [(C,‘,° - ke | CLO ) sin ye * CL. cos 1‘]

whers
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y =tan’l (v. /v )
P hp xp
Y = tan”! v /V )
e he xe

and the subscripts p and e refer to tne pursuer and evader, respec-
tively. The final time tf as well as the initial values of the state
variables are specified. D C_, D and C_ are constants defined

p Tp e Te
in Chapter 1V. cLe and CLp are the controls and are constrained by

cl.p min = ch = ch max

cI.e min icl.cs icl.e max

The constants kp and k’ are chosen so that the linearized drag polar

relationships given by

c =C_ +k |cC
e

De DOe Le '

chchOp+kp chpl
represent the best linear approximation to the pgf.abolic drag poiar
rclationships given in Chapter II. As in the last chapter, analysis
of this problem is made easier if the state variables x, h, Vx, and

Vh are replaced by V and y where

\l:[\l“’@vz]l/2 and yntaﬂ'lchIV)
x h h x
The resulting state equations are

X =V cos vy
p p

h =V siny
P P P (48)

VaD [C. -k |c |l
p p T p'Lp

S0

RN T i VoY e S er e T vy
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Yy =D C MV
% ‘™

X =V cosy
] 3 )

A FERE SIS ATV %@fkﬁ%

he = Ve sin 1;

o

v° -ne [c.l,e -k, lcl“ )]

Y, ® D° CM/VQ

T g A

which replszce Eqs (46) and 47).

wt e

Necessary Conditions

Applying necessary conditions for a saddle point solution,
Hsmiltonian is

the

v -
Hs A e Ve cos v+ xhe . sin LR xv D [C k |c

e e  Te Le“

+ AY° Dg cLe/ve * Axp Vp cos yb + xhp Vb sin y

+2 D [c. .x C J+2_ D c yv
VppITp p'l-pl Y p Llpp

The costate equations are
A, =0
xp
hp * 0
p

(50)

2
A, =-2 cosy -2 siny +4 p ¢ Fi's
Vp xp P hp P Y » Lpp

A =V (A sin -A cosvy)
Y P xp "p hp »
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.

A (¢}
he *

2

i = -A__ coOS - X, sin +2 D C /v
Ve Xxe Ye he Ye ye ¢ Le/ e

v \ i - cos
A = . ()xe sin Yo A ye)

ve he

The transversality conditions yield

A (€)= - A " (ty) = (x, - xp)/R 't-t

X
£
‘e P 7 Ay (B = (- bR !tctf
Ay () = 0 2
A () =0
yp €)= 0
, (£ =0

It is necessary that the Hamiltonian be minimized with respect

to C  and maximized with respect to cLe subject to the constraints

Lp
onC and C . Tc determine the C thai minimizes H, coansider the
Lp Le Lp
terms in H that explicitly contain ch' Defining these terms as H ,
p
H=-Xx DX |C |+ar D C /v (53)
P vp pp Lp Yy p lpp

IfC > 0, Eq (53) can be written as
Lp

—
H =(-A kD +) DJ/V]C
p Vb pp Yy pp Lp

and for CLp < 0, Eq {53) becomes

H =1 X D +x D/]C
p Vp o P Yy P P Lp

52
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. ;
i Defining
; M':[-2 kD +r D)
. F Vp P p Yy p P
3 M =y k D ¢+« D (55)
: P ( Vp P P Y P P] 3
Eq (53) can be written as ] E
u’' ; C, >0
P Ip ’ Lp
H = R (56)
P M C : C <0
P Lp Lp
To determine the cl.p that minizizes lTp and thus minimizes H, the
following figure is convenient. 1
f?
k:
;
Figure 9. Diagram Showing W vs. C '
P Lp ;

$3

e hy ke bt Jio e




The minimum of }Tp with respect to CL is
P

min {0, M ~ C ,M'CL }
P Lp min P p max

‘fF the minimum of H is M ~ C , the minimizing control is C .
P p Lp wmin Lp min

If the minimm i is M ' C , the minimizing control is C .
P P Lp max Lp max

If the minimum ¥ is equal to zero, the minimizing contrel cl.p is either
4
2250 or is a singular control.

To determine the cl.e that maximizes H define

H = - D k [C e D C /v
e = xVe e e I L2 - AY@ e LC/ e

Defining

=
"

: - Rk +a D/V] (57)
e e e ¢ Ye ¢ e

and

M
e

D k + D /v S8
[Xve A / ] . ( )
i can be written as

M C C >0
e Le Le

H = . (59)
e M C C <0 .
e Le Le

The maximum H with respect to CL is
e e

L
max {0, Me c

M C
Le max’ e Le min

— L g
If the maximum H is M C
e e

Le max’ the maximizing control is cl.e max’

If the maximum H is M C , the maximizing control is C

e ¢ Le min Le min’

If the maximum H is zero, the maximizing control is either zero or
e

is a singular control.
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Problem Solution

It is shown in Appendix B, that singular controls cannot occur

in this problem and that an optimal solution is one of the control

sequences

{C ¢ s 0}, {C

or C , (0
tp ®ax °* “Lp min tp max % Cpp gy ¢+ 1

The swiiching point for the first sequence is determined by integrating
backwards in time from the terminal surface the state and costate
differential equations assuming the controi CLP =0

Along the ch = 0 arc, the state equations are

; =Y cos vy
o p P

i =V siny
P

P P (60)

and the costate equations are

A =0
xp

. (s1)
A, = -2 cosy -2 sin
Vp Xp P hp Y

A =V (A siny -2 <cosy)
b P X p hp |

From transversality conditions and Eqs (61)

AXp t) = XNP (th = - cos 0

(62)
Ahp (t) = Ahp (t:) = - sin 0

$S

Sl ek

e 5 R ikt S A b it b rtadin L s stas 2,

FIFIONEN
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where ¢ i5 the angle measured between a line from the pursuer to the

cvader and the horizontal at t = tf. Substituting Eqs (62) into (61)

gives

. (63)
AVp = cos (0 - Y.F)

A =V sin (0 - )
» P )

Integrating V yields
P

V (t) =V (¢j-D C t, -t} 64
p (t) o (tJ b S1p (tg - ¢) (64)

; Integrating AVp yields

- t) (65)

A, (t) =-cos (@ -,) (t

f

where AVp (tf) = 0 from traasversality conditions.

Integrating ) yields
YP

» () -2 (t)ssin(0~y)zfv (t) dt
& Yy f P P P

(66)
Yo 9
A () = - =in (0 - VvV (t)/( C dv
w @ v () P p ‘1)
= - sin (0 ) v 2 (t)-v 2 (t)y/(20 C_)
e F p p Tp
vhere (tf) a 0 from transversality conditions. Substituting Eq
P
(64) into (66),
v () =-V (t) sin (6 - v ) (t_.-¢t) {1 »
Yp P v P O 67

56
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D C_(t_-t)/(v ()}
b C1p (t, - t)/( >

Necessary conditicns to be on a CLp = § arc sre

M ol-a k ¢2 WN]>0 (68)
Vpr wop
or

M =fA k +1 /N]} <O 69)
(Vp p’ Ypp] (

Substituting Eqs (65) and (67) into (68) and (69) yields

tan (0 - Yp) < RP/II * DP CTp (tg - t)/(ZVp)]

tan (0 - yP) > -k /e L3 ch (t, - z)/(zvp)]

which can be combined to give

t Q- k/{i+b C t, - t)/(2v 70
ltan @ - vy | <k/lieD Co (e - e)/(2V)) (70)

The solution to a general problem is similar to the solution
obtained in the last chapter in that it is characterized by a hard turn
with either C or C as the control followed by a non-turning

Lp max Lp min
arc or dash. The principle difference between this solution and that
of Chapter VI, is the condition under which switching occurs. In the

solution to this problem switching to the non-turning arc occurs for

the pursuer when

| tan (0 - vp) | = kp/n . ”,, Crp (- tps)/(szn (71)
and for the evader when
| tan (@ - ye) | = ke/[l + o° c,re (t £ t“)/(zv’)] (72)

wheret and t are the switching times for th2 pursuer and evader
ps es

respectively, and 0 must satisfy
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DQIMC /R
|2 anF g IR,

tan 0 = {he (tes) - hp (tps) + vhe (tes) (tf - t”) <,
2
- vhp “ps) (t £" tps) + 1)‘3 LTO sin Ye (t“) (cf - tes) /2
. . 2
- Dp CTp sin Yp (tps) {.f tps) /2}/{xe (tes) (73)

xp (tps) + Vxe (tes) (tf - tes) - pr (tps) (tf - tps)

2
« D cTe cos v (tes) (tf - tes) /y

2
-D C_ cos t (t -t }
P Tp Yp { pS) We PSJ / 2

To show this, the state equations given by Eqs (46) and (47) evaluated

for C and C  equal to zero aras
Ly Le

[]
L=}

v C_ cos v D C_ cos
Xp P Tp Yp xe B e Te Ye

9 D C sin V =D C in
hp p Tp Yp he e Te 2 70

Integrating V and V  and remembering that vy and y are constant
xp xe P e

when C and C_ are equal to zero yields
Lp Le

v t) =V t 3 +D C_ cos t t-~t
xp (8 = Yy (£ T+ D) v, € k-t

Tp

and

Vxe (t) =V (tes) +D cos y (tes) (t - tes)

c
xe P Te e

Integrating these equations and combining the results,

xe (t) - xp (t) = xe (tes) - xp (tps) + vxe (tes) {t - tes) - {74)

58

RS RN




o

33

ramRAT R

2
vxp (zps) (t - tP,) . o° c% cos -;’ (t“) (t - t“) / "

[Ty

2
-D € cos T t-t )/
p “1p Ypfp')( ps /2

The foilowing equation is similarly obtained for the h components of
the state equations.

h‘ () - hP (t) = h. (t“) - hp (tps) = Vh. [t”) (¢t -t

e AR PPV ) 1 FEIR PARITIRT RS

)
es (75)
2
- vhp (tps) (t - tps) + !)° CT. sin y‘ (t“) (t - t“) /2

e

2
-D C sin ¢ J(-¢t )/
p Tp YP ps ( ps’ 2

Dividing Ea (75) by (74) and evaluating at t = ¢ £ yieids

tan ¢ = {h° (t”) - hp (tps) + Vh‘ (t”) (tf - t“)

. . 2,
- vhp (tps) (t P tps) * De CT. sin 1‘ (t”) (tf - t”) 7,

LR NOR tp’lzlz}/(x° ¢, )
"X Cpad *Vie Cogd 7 Beg? T Vip Cpad G %
+ De CT‘ cos Ye (t“) (t£ - t“)zi 2
- Dp c‘l‘p cos Tp (tps) (tf - tps)zl 2)

Because the optimal controls for this problem sclution correspond to

either a hard turn or a straight dash and because the switching point

can be defined in terms of time to go 2ad the state variables, a

closed-loop solution to a general problem can be constructed ss
follows:

(1) For the evader, choose the control C or C
Le max Le min
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that causes the cvader to rotate its velocity vector

away from the pursuer. Holding this cheice of control

constant, integrate a turning trajectory for the evader.
(2) For the pursuer, choose the control C or C

Lp max Lp min
that causes the pursucr to turn in the direction

necessary to achieve a tail chase condition. Holding
this choice of contrsl constant infegrate a turning
trajectory for the pursuer.

b (3) The switching points (if they exist) for the pursuer
and evader must lie on these turning trajectcries and
must satisfy Eqs (71) and (72). A numerical search
is required to find the direction O and the pair of
points on the two turning trajectories that satisfy
Egs (71), (72), and (73). If these switching points
do not exist due to the ability of the evader to turn

tighter than the pursuer, the aircraft will not switch

G St

from the turning controls to the €i§° controls and the
hard turn controls will be maintaiﬁed over the complete
3 trajectory. The geometry of this sciution is shown
in Figure 10.
As in the previous chapter, this sclution is an open-loop solution.
However, since it can be provided on a continucus basis, it constitutes
a closed-loop strategy or control law. ’

The importance of this differential game problem solution is that

/ = drag dve to 1ift (indvced drag) wes included in the aircraft model.

«pr
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l P o\\\']z |
\ ~SWITCH POINT FOR P

(0-1%)

Figure 10.

Switching Point Geometry for Linearized Drag Polar
Control Law
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VIII. MODEL COMPARISON

The preccding four chapters were concerned with the .solution to a
| R pursuit-evasien differential game between two aircraft. The difference
: ] in these chapters was in the model chosen to represent the aircraft.

. z The purpuse of this chapter is to apply the results obtained in

| Chapters 1V thru VII to the same game situation and to compare the it
different soiutions. In doing this there are two important corsidera-

tions. The first is the payoff or value of the game which is the

"

numerical measure that reflects the relative capabilities of the two

ESNIInT

aircraft. The capability to determine this numerical! measure through

the use of simplified aircraft models would be a significant design

o

tool. The second consideration is the correspondence of the resulting

e e =

aircraft trajectories. The capability to determine optimzl or near
optimal trajectories by using closed-ioop control laws developed

through the use of simplified models is important in thé area of i
aircraft tactics. To'accomplish this comparison, two probleuk are

considered. These are the problems for which open-loop solutions were

presented in Chapter 1IV. In Chapter IV, these problems were defined ‘;
by specifying final values of the state vector. It was pointed out

that the solutions to these problems represented open-loop solutions

for the differential game problems where the specified initial state
conditions 5_(t°) corresponded to some point x (t) on these trajectori- .
For purposes of this chapter, these problems are specified in terms of

initial values of the state vector.

Problem 1

The initial conditions for this problem are
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x (t) = 19522 feet x (t) = 10893 feet
e o P o

h (t ) = 27671 feet h (t ) = 39984 fect
e © P ©

v (to) = 857 ft/sec

v t ) = 1137 ft/sec
xe xp ( o) /

] v t 508 £
Vh’ (toj §53 ft/sec hp ( o) - t/sec.

The choice of other necessary dats is

D = 122 ft/sec’ D = 192 ft/esc’
e P
* c .o‘
cTc - .06 Tp *
kK =.5§ kK «.§
e P

The final :ime is 20 seconds and the admissible controls arz given by

C <1 ic
I |
The standard model open-loop solution to this problea was shown in

Figure 4. In this problem the pursuer is initially above and behind

the evader. The pursuer has approximately a 200 ft/sec speed advantage

over the evader and also has a greater acceieration capability by
virtue of the chonice of Qp and De.

Static Model Solution

In Chepter V, a procedure was presented that would enable the

static model solution to be used as a closed-loop control law. The

procedure is to solve the static problem at each integration step as

if the flight path direction of both aircraft is to remain fixed. The

optimal controls for the solution tc the static problem are then applied

to the standard model dynamics. Applying this control law to Problem 1
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4r
yiclds the solution shown in Figure 11. For comparative purposes, the £y

standard model solution is also shown. The payoff or value of the game

is 10055 feet.

Zero Induced Drag Model Solution

In Chapter VI, a zero incuced drag model was presented. By

assuming zero induced drag and neglecting gravitational forces, an ;
optimal closed-locp control law was obtained. A method for correcting
for induced drag was also discussed. For purposes of this chapter,
gravity and the induced drag correction are included. Applying the
control law obtained for the zero induced drag model to Problem 1,

yields the solution in Figure 12. The value of the game is 10232 feet.

Linearized Drag Polar Model Solution 13

in Chapter VII, an optimal closed-loop solution was obtained for

.i a linearized drag polar model with gravity neglected. For purposes of
l this chapter, gravity is included. Ap»nlication of the linearized drag ly
polar model control law to Problem ], yields the solution shown in

. ii
Figure 13. The value of the game is 11110 faet. . ﬁ

N "4
Problem 2 ‘ : ;

The initial conditions for this problem are

9944 feet

x (t) = 15036 feet x (t)
e o P 0

[}
sl il

k h (t) = 23131 feet h (t) = 19298 feet
e o P o

L gl

V (t ) = 1246 ft/sec V. (t) = 1403 ft/sec
xe o o

V. (t) = -72 ft/sec V. (t ) = -361 ft/sec
he "o o
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‘ .
., 0 - Standard Model Solution

A - Static Model Solution
| )

400,00

[
Pursuer

n10*
360.00

h - Altitude Feet

250.00

. Evader

200.60

s!!'.!ﬁ

00  100.00 $50.00 abo.oow,zio.oo 00.00 950.00
]

X - Range Feet
Figure 11. Static Model Solution - Prcblea 1
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; 3 A - Zero Induced Drag Model
4 S Solution
W) =y
: =»
: o -
4 [~ ]
3 o
3 21
=/ Pursuer
3 o o
e Q N~
F: Q [ 2]
1 129
3 3 o .
‘- RS -
3 5w
‘ <
; J R
: o e -
3 o
3 Ha Evader
o
; e
4 g
. o~
(v
o
P~
3 n Y o — T 4
- "56.00 100.00 150.00 200.0010’250.00 300.00 350.00
-4 : n
' X - Range Fest
E Figure 12. Zero Induced Drag Model Solution - Problem 1
<3
E L
1 66

eyt v bt SRS

AT 0] - g

L e

L2

PO R BN IS ¢ i A e e

T

iy g s
PESITTI] )

. .
it Pt e s

e ek LT

i St e AR




[Ny

qeergd

e
E

\

W

_mmw

S T AR R

RERY i

-
crw

]
L o - Standard Model Solution §
- ° 8 - Linearized Drag Polar !
'3 e Model Solution ;
l‘ - | g 4
-
i : =1
8 Pursuer
] g a
: 8 "
P &
i .
| 3 o8 |
E. -t e
, 4
: <
¥ '
i o
. . s !
& :
~ . Evader E
° :
(-]
o ;
(- e
b ~ F
[~}
[
l°: Ex
"50.00  100.00 150.00 207,00 _250.00  300.00 350,08
210 ]
X - Rsnge Feet 3
Figure 13. Linearized Drag Polar Model Solution - Problem 1 3
5
5
67 ]
3
E

me- i W N




| 3
1 3
!

DS/MC/67-1

The choice of other necessary data is

L

2
De = 160 ft/sec2 Dp =z 175 ft/sec

e 1 C
P e, 1

The pursuing aircraft is initially below and behind the evading aircraft.
Although the pursuer has an initial velocity advantage of approximately
200 ft/sec., his acceleration advantage over the evader is very small.
The standard model open-loop solution to this problem was shown in
Figure 5.

Applying the static model control law to this problem yields the
solution shown in Figure 14. The value of the game is 5863 feet.

The zero induced dﬁag model solution without the induced drag
correction is shown in Figure 15. In this solution the "tail chase"’
situation is never achieved. Although the pursuer has a lift advantage
over the evader, the turn rate of the pursuer is limited by ﬁis
velocity, Vp, sincc turn rate is inversely proportional to velocity.
When the induced drag correction is included, the pursuer's velocity
is maintained sufficiently low to allow achievement of the tail chase
solution. This solution is shown in Figure 16. The value of the game
for these solutions is 5440 feet with the induced drzg correction and
4302 fcet without.

Three linearized drag polar model solutions are shown. The

differcnce between these solutions is in the choice of the induced drag
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coefficient (k). For the solution shown in Figure 17, the value of k

and k is the same as the parabolic drag polar coefficient used in the
P

standard model (k = k = ,§).
P ]

and ke are taken to be .4 and in Figure 19, kp and ke are .33. The
lower coefficlents correspond to a lesscr value of induced drag. The
variations in these solutions give an indication of the importance of

how induced drag is accounted for in the aircraft model.

the game for thesc solutions is

5798 feet for k =k
P e

§412 feet for k s k
P ¢

5i40 feet for k =k
P

Discussion

Problem 1

Model
Standard

Static
Zere Induced Drag

Linearized Drag Polar
Problem 2

Model
Standard

Static

T 3ot ) Txopit bar ) CSULICEY
o R TTI R  E *
e R T RS TR T TR S ERTI Sl

Fer the solucion shown in Figure 18, k

= .s

= .4

= .33
e

For convenience in comparing the results ootained in this chapter,

the payoi'ts or game values for both problems are summarized.

Payoff
S 9897 feet

10055 feet
10932 feet

11110 feet

Payoff
5831 feet

5863 feet

The value of

L4

They are
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(kp = k‘ = .§)
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h - Altitude Feet
u10?
250.00 300.00 950.00 $00.00

150.00
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o - Standaru Model Solution

A - Linearized Drag Polar Model
Solution

Pursuer

390,00

0.00

Figure 18.
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Linearized Drag Polar Model Solution - Problem 2
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o - Standard Model Solution

8. li A - Linearized Drag Polar
.8,* t Model Solution
8
8
o
e 9
i 8
-]
g "‘58. Evader
3 "‘§q
. < "
' ?
= 3‘
A X .
»n &
l 8. Pursuer
= 81
: 8 DS 9’ 5 )4 B 3 g
"$0.00 100,00 150,00 200.0010‘250.00 300.00 350.00
a
) X - Range Feet
Figure 19. Linearized Drag Polar Model Solution - Probleam 2

(kP = ke = ,33)
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Z2ro Induced Drag g
with correction 5440 fecet
without correction 4302 feet

Linearized Drag Polar

k =k = .5 5798 feet
? ¢

kK =%k = .4 5412 feet
P e .
k =k = .33 5140 feet
P e

These results indicate that a numerical measure reflecting the relative
capability between two aircraft can be determined by sclving differen-
tial games with simplified models. All of the solutions to Problem 1
Tesult in trajectories that exhibit a aistinct turning arc followed by
a fairly straight approach to termination. The standard aircraft model
solution to Problem 2 does not exhibit this characteristic as distinctly ; ;
because of the effect of gravity. 1t is interestiag to note that the
line of sight angle (9) between the pursucr and evader at termination
is nominally independent of the model zhat is used.
These observations are used in the next chapter to synthesize

a fecdback control 1aw for the non-linear standard 2ircraft model.
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IX. CONTROL LAW SYNTHESIS

In Chapters V, VI, and VII, optimal closed-loop solutions to
special types of pursuit-evasion differentiai game probiems were
presented. In order to obtain these solutions various simplifications
were made to the standard aircraft medel. In Chapter VIII, the
simplified model solutions were compared with standard model solutions.
The purpose of this chapter is to synthesize a closed-loop control law

for the standard aircraft model utilizing inforsation from the resuilts

of Chapters V thru VIII.

Control Law Synthesis

The most important parameter in the solutions of the simplified
aircraft problems is 0, the line of sight angle betweazn the two
aircraft at termination. Once © is determined, the solution to these

problems is known. In the static model problen the optimal controls

are
L
CLP = tan (@ - E)I(ka)
and
»
CM = tan (0 - $)/(2|‘°)
for
*
cl-p min < ch ic!.p nax

[ 3
Cie min 5 Cle < CLe max

Geonetric significance can be given to this choice of contsols
since the tangent to the acceleration vectogram of the static model at

*
the point corresponding to C"P is perpendicular to the final line of

77

€ 3t s 13
[




o okt

p5/MC/67-1

sight direction 0. To show this the x and h coordinates corresponding

to this point on the vectogram are

* 2 L
= - ' - C
x Dp [(C,rp kp Lp ) cos ¢ LLp sin £) (76)
h=b [(C. -k C 2)si ¢ ] on
= - L sin ¢+ € cos &
p Tp p ip Lp

*

Differentiating Eqs (76) and (77) with respect to ch’

 § *
dx/dcLp = Dp {- 2kp CLP cos £ - sin ] (78}
and
h/ ¥ [- 2k *
dh/dC. =D ([- 2k C, sin £ + cos 79
p =0, b & Gy sin & 3 (79)

Combining Eqs (78) and (79),
* »
dh/dx = [- 2k C_ sin £ + cos -2k C
fx = - 2% O Q- 2 c
" (80)
" tan &)

cos £ - siu £}

]
-2 -
= { kp CLp tan £ + 1)/( 2kP c
*®
with CLp = tan (0 - E)I(ZXP) Eq (80) becomes
dh/dx = [- tan (0 - £) tan £ + i]J/{- tan (@ ~ &) - tan £]
= - 1/tan Q
This proves that the tangent to the vectogram at the point correspond-
»
ing to CLp is perpendicular to 0. Figure 20 shows that if a value of

-
CLP greater or less than CLp is chosen, a lower component of accelera-

tion is applied along the @ direction. This geometcically represents-
the pursuer's half of the saddle point solution. The optimal control
for this problem can be defined as that admissible control which
applies the largest acceleration compcaent in the 0 direction.

In the zero induced drag model problem the optimal solution is

to employ a saturated control until the flight path direction of the
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v

vehicles are equal to 0. The choice of the saturated control (CL )
3 j applies the largest acceleration component possible in the 0 direction

as can be seen in Figure 21. When the flight path directions of the

vehicles are in the 0 direction all points on the acceleration vecto-

o e o e sy g
e M ottt i g >y

. grax are perpendicular to the 0 direction. At this time any choice

of control other than the singular control chs = 0 ,will cause the
} ' aircraft to turn away from the desired direction of flight.

In the linearized drag polar model problem the optimal solution

involves the employment of saturated controls until ]

1 : tan (0 - k/{1+D C_ (t -~ t)/(V ;
ﬁ ; | tan ( ’p"‘p"‘prp‘f )/(P)l

:‘ : is satisfied for the pursuer and

| tan (0 - veil <k /014 D Cre “f - ©)/(2v)] §
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is satisfied for the evader. Q

<—CLuax

TSRS, STITITTTERS
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Figure 21. Zero Induced Drag Model Control Selection Geometry
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When these inequalities are satisfied any gains made by continued

NS

MR

application of the saturated control are more than offset by increased
drag penalties.

.3 In the standard aircraft model problem the optimal controls are
X *

Clp ™ tan (8 - v /(2 )

siokigne ) 2
e Sudehand LY At

PSP

and
*

(:Le = tan (Be - Ye)/(Zke) B

e ot A

for
*

ch rin = CLp < ch max

: 3
*

i
Le min < cLe < cLe max

b
%
v
‘
b
5
3
;
]
3
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3
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The difference between this problem arnd th. static problem is that 8 ,
Yp' Be’ and Ye are not constants. Tﬁe analysis of the optimal co?trois
for the static model does apply on an instantaneous basis since CL and
C;B are the controls that apply thu largest acceleration component along
the bp and B° directions respectively, This suggests a mathod of
synthesizing a closed-loop control law for the standard aireraft

model by approximaiing instantanecus values of B_ and Be' From trans-
versality conditions for thie standard model problem
Bp (tf) ® B° (tf) =@

It therefore seems reasonable to approximate 8 and Be by 0. In
Problem 1 of the previous chapter, it is observed that the solutions
for-all the models yield vaiues of 9 that are relatively close. In
Problgn 2, all soluticns yiel& reascnably close vaiues of 0, excepting
the zero induced drag solution without the induced drag correction.
For purposes of synthesizing a feedback strategy that is r¢ -vonsive to
any move of the opponent, O wust be determined from a dynamic rather
than a static model.

The following algorithm is proposed as a closed-loop contrcl law
for application with the standard aircraft model.

step

At each integration

1. Determine @ using the linearized drag polar model

solution.

2. Determine the instantaneous values of control from

cLP = tan (0 - vp)/(ZkP)

and

Clo ™ tan (0- YQ)/(ZRO)
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This control law uses the dynamics of the linearized drag polar EZ;

model and the determination of control offered by the static model.
The results of the previous chapter show that the payoff resulting
from the static model solutions is closest to the payoff of the
standard model in both problems.

For this control law to be 'reasonable’, the solution to a differ-
ential game problem in which the pursuer and evader both employ this
control law should have a payoff relatively close to the value of the
game. To show this, Problem~ 1 and 2 defined in the previous chaptexr
are soived. The standard model dynamics are used and the pursuer and
~vader both cmploy the closed-loop control law synthesized in this
chapter. The solution for Problem 1 is shown in Figure 22 and the

solution for Problem 2 is shown in Figure 23. The numerical results

are

Problem 1 e
Standard Model Extremals - Game Value - 9897 feet
Standard Model Using
Synthesized Control Law -~ Payoff - 10147 feet

Problem 2
Standard Model Extremals - Game Value - 5831 feet
Standard Model Using
Synthesized Control Law - Payoff - 6018 feet

It is seen that the application of the synthesized control law does

a reasonable job of duplicating the optimal saddle point game soiution,
implying that the payoff is reasonably clese to the value of the game
and the trajectories are also close, In order to determine the

optimality of this control law, it musi be tested against the best
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h - Altitude Feet

o - Standard Model Solution

A - Synthesized Control Law
Solution

" Pursuer

0 350.00

u10®
300.00

2%0.00

" Evader

Y

150,00

0.4  100.90  150.00 250.00‘0.230.00 300.00 350.00
»®

X - Range Feet

Figure 22, Stand=.d Model Solution Using the Synthesized
Coutrol Law - Problea 1
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%
2
3
it & 3
f
0 - Standard Model Solution
o
3 4 - Synthesized Control Law
S Solution
[« ]
[+ ]
g
i
[=]
e
) o
Q 3.1
& 0
S
3 « 8 Evader
.ﬂ oo‘ .
R
<
]
- ]
o
€ =
o
Qo
e
.fé. Pursuer
[~}
o
o
o T T —y " Y -
“50.00 100.00 t50.03 200.00 ’259.00 300.00 850.00

=10 :

X - Range Feet

Figure 23. Standard Model Solution Using the Synthesized
Control Law - Problem 2
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oven-loop strategy of the oppesing player. Suppose the evader plays
optimally against the pursuer who employs this control law and the
resulting payoff'is equal to the game value pius a distance n. This

control law is then said to be n optimal against any strategy for the

evader,

Synthesized Control Law Optimality

To determine the optimality of this control law, a comsputer
program was developed that optimizes the cvader's trajestory against
& pursuer employing this synthesized control law. A parameter optimi-
zation problen was foramulated by considering the evader's control at
each integration time step as an independent parameter.

Cl'e (ti)’ci i=1¢o tf/At

The parameters @ are then adjusted to maximize the distance
between the pursuer and evader at termination (t = tf). This parameter
adjustment was accomplished using the Random Ray Search Algorithm,
contained in a program entitled, “Automated Engineering and Scieutific
Optimization Program (RESOP)", (Ref {7]). This procedure was applied
to both problems considered in the preceding chapter. The solutions
are shown in Figure 24 and Figure 25. The saddle point soluticns are
also shown for comparative purposes,

By employing the best open-locp strategy, the evader is able to

obtain a payoff of 10541 feet, which represents a six and one-half

percent increase over the saddle point game value in Problem 1. In
the second problem, the evader is able to obtain a payoff of 6319 feet
representing an eight and four-tenths percent increase over the saddle

point game value. It must be remembered that these payoffs represent
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the best that the evader can do against the synthesized control law

and that there is no closed-loop control law available that ailows the

evader to achieve these payoffs.
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X. CONCLUSIONS

%}
g
£

Closed-loop solutions to four pui'suit-cvasion differential games

L

between two ajircraft have been presented. For the three simplified

e Y

sircraft models considered, optimal closea-loop control laws azs
R found. For the standard sircraft model, a "near" or approximate
i optimal clossd-loop control law is synthesized. The coptimality of
this control law is investigated and found to be quite good.
To be of practical value, the solution to a differential game

problem must provide closed-loop control laws. The ability to determine

closed-100p coatrol laws through modeling has been demonstrated in
this study. It is believed that the same approach can and should be
applied to other aspects of the combat differential game with equaily
fruitful results anticipated.

It is hoped that the approach taken in this investigation will

stimulate an interest in the investigation of "practical" differential ;

game problems. :

qp

",

89

PECSUGEL T cany s o Sy




7 Yo

e var e SRS

e g e e

DS/MC/67-1

(1]

(2]

(3]

(4]

(sl

{6l

(71

(8}

{91

{10]

{11]

(12]

{13}

BIBLIOGRAPHY "

Anderson, Gerald M., '"Necessary Conditions for Singular
Solutions in Differential Games with Controls Appearing
Linearly", Proceedings of the First International
Conference on the Theory and Application of Differential
Games, University of Massachusetts, Amherst, Massachusetts,
September 29 to October 1, 1969,

Baron, S., 'Differential Games and Optimal-iursuit-ﬁvasion
Strategies', Ph.D Dissertation, Engineering and Applied
Physics, Harvard University, 1966.

Berkovitz, L. D., "A Variational Approach to Differential
Games", Advances in Game Theory, Annals of Math. Study 52,
Princeton University Press, 1964, pp. 127-174.

Breakwell, J. V. and Y. C. Fo, "On the Conjugate Point
Condition for the Control Problem', International Journal
of Engineering Science, Vol. 2, pp. 565-579, Pergamon Press
Ltd. 1965, printed in Great Britain.

Bryson, A. E., and Y. C. Ho, "Applied Optimal Controi",
Blaisdell.

Fleming, W. H., "A Note on Differentizl Games of Prescribed
Duration", Contributions to the Theory of Games, Vol. III, .,
Princeton University Press, 1957, pp. 407-416.

Hague, D. S. and C. R. Blatt, "An Introduction to Multivariable
Search Techniques for Parameter Optimization (and Program
AESOP)'", NASA, CR-73200, April, 1968.

Ho, Y. C., A. E. Bryson and S. Baron, "Differential Games
and Optimal Pursuit Evasion Strategies", IEEE Transacticns
on Automatic Contrcl, Vol. AC-10, No 4, 1965, pp. 385-389.

Isaacs, R., "Differential Games™, I, II, IIX, IV, RAND
Corporaticn RM-1391, RM-1399, RM-1411, RM-1486, 1954,

Isaacs, R., "Differeatial Games", John Wiley, 196S.

Miele, Angelo, "Flight Mechanics-1, Theory of Flight Paths,"
Addison Wesley.

Schmitendor€, ¥W. E. and S. J. Citron, "On the Conjugate
Point Condition for a Class of Differential Games', AA and
ES 67-11, Purdue University, 1967.

Simakova, E. N., '"Differential Games', (Survey Article),

Aotomatikoe i Telemekhanikoi, Vol, 27, No. 11, 1966, pp.
161-178 ({Translation in Automation and Remote Control).

90

L et »%;s‘éﬁiﬁw%m ﬁﬁ;

“

Corar o st L

©paags et ne

T AR

s

St it ¥, hlemiatah

PR A URA




R N Y YR R B

gy -t

TR R Am L gy

S e o,

S VI

Bmas wn,,,ma»m}" -

S d

{14] Starr A. W.and ¥, C. Ho

Journai Optimization Theory and Application,
1969, )

(15]

{16]

» "Nonzero-Sum Pifferential Games",
3' Not 3‘1 “.rch)

Starr A, W. and v, C. Ho, "Further Properties of Nonzero-Sum
Differential Games", Journg)

Optimization Thesry and Application,
3, No. 4, Aprii, 1969.

¥ong, R. E., "Some Aerospace Differencia) Games", Journa}
of Spacecraft and Rockets, Voi. 4, No. 11, November 1967,

9

e A W S A e by

e A




ST FREEIRRTE ST T - AVEES N - - e e B R TR T 8 P
s e T

TR PEEES
=

SN )eT-]

APPENDIN A: SUFFICIENT CONDITIONS FOR A LOCAL SADDLE POINT

Losjose
Lo fhe purpose of this appendix is to sketch the derivation of
.

lrcient conditions for a local saddle point solution to the differ-

ential game problem considered in this disserration.

pakatiekd
.
o

The derivation

.¢ s.nilac to that in Ref [2], which is analogous to the approach
\ 3 -3 raken for the optimal control problem in Ref 4],
3 D1 ferertial Game Problem
3 t S T ST E T
» ‘the following differential game problem is considered. Determine
1 saddle point of
te
I (x (e, )+ [ L(x, u, v, t) dt (A-1)
o
|
subject to
x = £(x, u. v, t) x (t) =x,
©2 X i3 an n-vector. The terminal surface is given by
S {t),t)=T-t =0
!\__ |8 f) f) f
oo 0 i3 a spocified fixed time implying that the game is of finite
“.oectien. The functions 46, f, and L are of class c? with respect to
U aroments. The admissible controls u (t) and v (t) are subject
-~ rlhe cnastraints
u. <uc<u
nin - - max
3 v, <v<y
3 min - max
1 21 ére piecevise continuous on [t , t ].
i 4
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Necessary Conditions

Adjoining the differential constraints to the payoff J with a
Lagrange multiplier ) (t), Eq (A-1) may be written as

t .
Jesaadty e ffrmu v ey -1 @2
t

°
The Hamiltonian, H is defined by

B (t, x, A, U, v)-_x_TgoL
z2nd it is assumed that for the class of problems being considered the
Hamiltonian is separable. This means that H can be separated into
two functions, one of which is independent of u and the other independ-
ent of v. Integrating the last term on the right side of Eq (A-2) by
parts, yields

Teax(e, td -2t (¢ x e ¢ () x ()

. + }f {H + i? X} dt (-3
t

The application of control variations ¢u and gv results in a variation
éx in the state vector and a change in J. The change in J, to second

order, dus to these variations may be written as

T T
sl = (o -2)sx|, + O & |
b 3 tf t
X %
2 ‘T
+ 172 |f & || o+ ffim +x ) ex+n s
¢ tf t x u
° (A-4)
te T .8
+H &vldt +1/2 [° [sx susv] H dt
v t su
[+
LA

where
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H H o
XX xu xv
H = H H H
- U_x_ uu uy
H H H
vXx vu VY
and
2
Hosx |

T
R denotes the quadratic form éx ¢x x
XX

—
——n

48x is determined from

§x=f 6x+f éu+ f §&v
- X ~u v

—

& (t) = 0 (A-5)

°T
Choosing A = - Hx and ) (tf) = ¢x it » Eq (A-4) can be written as
= 1M

2 t
£
A = 1/2 5x + H 6su+ H é&v] dt

£

_X_x_ 4 L] (A-6)

+ 1/2 [f [_g:_(.T dusviH | | dt

t du
o
sv
* * * *
For(u , v ) to provide a saddle point of J, (u , v ) ‘must satisfy
* * » * * [ 3
J{u,v +v) <cJ (u,v)<J{(u +4éu v) (A-7)
for admissible variations Su and §v.
For Eq (A-7) to hold for any admissible 6u and §v, it is
necessary from first order considerations of AJ that
(i) H =0 H =0
u v (A-S)
(ii) H >0 H <0
Y vv
» ®
for v <cu <u and v <v <v ., If the minimizing control
min max min max
o4
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»
u. and the maximizing control v are on tha boundaries of their

admissible sets it is necessary that

H Su>¢ and H dv <0 {A-9)
u - v -

Sufficisnt Conditions:

* *
For non-interior u and v , H“ éu > 0 and Hv 8y < 0 where éu and

dv satisfy

*
u < <+ < u
min — fu s

* (A-10)
Vin SV * v <v

are sufficient to insure that J {u', v.) is at a saddle point since the
first order terms in Eq (A-6) dominate for small Su and dv.

For interior u. and v' the necessary conditions, Eqs (A-8),
cause the first order terms in Eq (A-6) to vanish and the variation

in J is given by

2 t - |8x
&4 - 172 {|sx || + 172 ff [sxT Su &v] H dt
- ¢ tf t - - Su
xx ° (A-11)
sv
with x determined from
sx= f Sx+f Su+f &v Sx(t) =0 (A-12)
- X “u v = e <

and all functions are evaluated along the extremal path.

The accessory minimax problem is to determine a saddle point of
62 J given by Eq (A-11) subject to the differential constraint, Eq
(A-12). For this problem the ainimizing control is Su and the

maximizing control is §v and they must satisfy the constraints given

by Eqs {A-10).
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\
3 and
\
b
where

&

R

A P
3 R
e

F

G
e

, strategies
9
L |

2 2
3 H/2u > G

&x aF éx+6 6u+G év
=TI=% e

Assuming that the strengthened Legendre-Clebsch conditions

2
? ﬁ/avz <0

can be written as

2 2 % 2
6 J=1/2 1] sx e e« IF (1] 8x (2) ]
e el I

+ Guz R - évz R ] at
] [

x () =0

vy
£ -f80H 'u -£gn ty
% uouwu ux "y vw VX
£
u
£
v

and all functioas are evaluated 2long the extremal path.

to this sccessory minimax problem, (Ref {2]), yields the optimal

are satisfied and using the results of Ref [4], Eqs (A-11) and (A-12)

(A-13)

(A-14)

The solution
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) U |

* -
du = - Ry 9’ L(t, t)dx

{A-15)

* T

-1 . ’
&v -R. 9_. g(t‘, t) &

vhere I (t ¢ t) is the symmetric matrix solution of the matrix Riccati
equation

. T -

t=-tFP-F sxet(e nlgT (A-16)

= == T = =P P P

1.7
AN

where

z (tf. tf) =S (A-17)

1f Eq (A-16) has a solution defined on [to, t f) satisfying Eq (A-17),
then the only solution of Eqs (A-16) satisfying Eq (A-17) is
Su (£)=0 and 4v (t) =0
Therefore the saddle point solution of the accessory minimax problea
is at
» [ ] 2 L *
(du =90, v = 0) and S J(du,dév)=0
since 8x (t) = 0. This implies that
2
I (upo, év =0)>0
and
z *
8§ J(u =0,8vrp0) <0
from which it is deduced that
PS *  J * * *
Ju,v ¢+8v) cJ(u,v)<J(u ¢8,v)
whick demonstrates that (u', v.) chosen to satisfy the necessary
conditions is a local saddle point for the originsl differential game

problea.
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pra

Conclusions

——

» *®
When the controls v and v are non-interior, the necessary

conditions given by Eq (A-9) with the inequalities holding are
- *
sutficient for {u , v ) to provide a saddle point of J.
* *
khen u and v are interior controls or nos-interior controls

vith “u and Hv equal to zero, the following condit ‘ans are sufficient
* *
for (u , v ) to provide a saddle point for the differeatial game

considered.

(1) The strengthened Legendre-Clebsch conditions

H >0 H <0
uun vv

(2) The existence of a solution to the matrix Riccati i

equation, Eq (A-16), on the interval [to, t). In o

f
Ref [2], the condltion when the solution to the matrix

Riccati equation becomes unbounded is related to the

<3

3 existence of a conjugate point on the extremal path.

These sufficiency conditions do not apply to singular arc

solutions.

skl

<>
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APVENDIX B: DETERMINATION OF ALLOWABLE CONTROL SEQUENCES FOR THE
DIFFERENTIAL GAME PROBLEM WITH THE LINEARIZED DRAG
POLAR MODEL

Purpose

The purpose of this apoendix is to determine the allowable
sequences of controls in an optimal solution to the differential game
problem using the linearized drag polar model which is presented in
Chapter VII.

The state and costate equaticns for this model are repeated for

convenience. The state equations, Eqs (48) and (49) are

F P
h =V siny (8-1
P P 4

é Vv si
e * Ve n Yc

(8-2)
vo=0 [ - L be
ye * De cl.elvc
The costate equations, Eqs (50) and (51) with Eqs {(62) are

A =0

xp

. o (8-3)
A =

hp




2
N

i =cos (Q-y)+2r D C
vp ( P Yp p

Lp p
i =V sin (0 - y ]
- p ( YP)
A =0
xe
xhe =0
. 2 (B-4)

= CO [+ J
AVe cos ( ye) * AYc De CLe/Ve
A =2V sin (0 -
ve " Vo ( Y,)
In Chapter VII, the controls that minimize the Hamiltonian are

determined to be CLp max’ CLp min’ CLp = 0, or a singular control

C, _. For the choice C to be optimal
Lps nax

Lp
Mp’ LN SR RS W ARY (B-5)
and for cLp min to be optimal
Mp' =0 Dy, k, + xw/vp] >0 (B-6)

+* -
For CLp = 0 to be optimal, “p must be positive or M  must be
negative. The singular control CLps occurs if HpQ or M~ is zero
over a finite time interval.

Allowable Control Sequences

In determining allowable sequences of controls, the physical
aspect of the problem must be considered. It is pointed out in
Chapter VII, that there is a direction @ asscciated with the solution

to this problem and that this direction is the line of sight direction
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between the two aircraft at t = tf, when they both play optimaily.

Since this ¢ direction exists for optimal play, it is physically
logical to assume that any control that causes either aircraft to
turn away from this direction is non-optimgl. Conversely, any non-
zero control to be optimal must rotate yp and Y, toward the 0 direc-

tion.

Consider initial conditions such that the ainimizing control for

the pursuer is initially cl.p ain’ For these initial conditions

HP ) DP “VP kP ¢ "\YPNP] >0
from Eq (B-6). For CL? min to be an optimal control, the physical
aspects of the problem require (9 - y ) to be negative. The allowable
sequences of controls from these initli'al conditions can be determined
by investigating the b.ehavior of the switching function M ~., Figure

26,- shows a switching function trajectory corresponding to the control

sequence {CLP min’ ci.p =0, cl.p nin}’ np (t f) equals zero since

b} t d
vp ( f) an xYp (tf) are zero from transversality conditions, Eqs

(52). To show that this sequrence is not an optimal sequence, the
derivative of ;‘p‘ is

N =D [ k - -
. pqup AN

2
AV NN B-7
YP P 1l’l’/l’] -7

Substituting for in’ xw, and V using Eqs (B-1) and (B-3), Eq (B-7)
P

becomes

- 2
M =D [k cos (0 - YY) + sin (0 - -A D C_/IV B-8
=0 [k cos ©-v) ©-v3 -2, 0, Cp/¥] (8-8)

It is seen in Figure 26, that to end on a C sare, M B (tf)
Lp »in

must be negative. This iamplies frum Eq (B-8) that
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Figure 26. Switching Function Trajectory for the Control Sequernce

Cc ,C,_=0,C .
¢ Lp min~ Lp Lp nxn)

<-k (8-9)

tan (0 - v )
P tf p

since xyp (tf) = 0 from transversality conditions. For the sequence

Lp min’ CLp =0, ch ain’ to exist, Mp must be zero at tl < tf.

From Eq (B-8) this occurs when

{c

2
k cocs (9 -yYesin(@-y)=2 D C_/V (B-10
P p p P T P )

P

It has been stated that the physical aspects of the problea require
(0 - vy ) to be negative for the control C . to be optimal. Eq
P Lp min .
{B-9) confirms this requiremenc. For negative (0 - y ), AYp is
|
negative and A_ must he positive in order to satisfy A (tf) = 0.
p P

This implies that the right hand side of Eq (B-10) is positive and

that

102




3
H
3
[
i
!

T2 4 AN AT

FEOARLISTTY

DS/MC/67-1

tan (0 - yp) >-k (B-11)

t
1 P

Eqs (B-10) and (B-11) imply that Yp has increased with time which is

not possible with the control C It is concluded that the

Lp min’

control sequence {(C g, =0,C } is not an optimal sequence.

Lp min’ "Lp Lp min

A wore basic conclusica is that Mp° cannot be zero for t < tf if the

arc. This result is used in the

solution is to end on & ch win

following analysis.

Singular Controls

The question whether or not singular controls exist for this
problem is now considered. Initial conditions are again chosen such
that the minimizing control for the pursuer is initisily CLp min’
Figure 27 shows three switching function trajectories containing

singular controls.

AMg

Figure 27. Switching Function Trajectories Containing Singular Arcs
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Trajectory 1, in Figure 27, corresponds to the control sequence
{C .,C ,C . }. This sequence can be eliminated as a possible
Lp min" Lps" Lp min
optimal sequence by the results previously obtained which conclude that
Mp- cannot be zero for t < tf if the solution is toend on a C

Lp min
arc.

Trajectory 2, in Figure 27, corresponds to the control sequence

( .
‘CLps} and trajectory 3 corresponds to the sequence (CLP min’ chs’
C =0},
Lp ! .
The sequence {chs} implies that M ~ and M ~ are zero along the

P

singular arc. To show that this is not an optimal sequence, setting

Mp- (tf) equal to zero implies

tan (@ -v) | =-k (8-12)
.f p

Eq (B-12) implies that (@ - y ) is negative and from Eq (B-3) Ayp is
p

negative. Therefore, for t <t , Ayp must be positive to satisfy

A {t) =0. M must be zero for all t. For t < t_Eq (B-8) implies
yp f P 3

. 2
k cos @ -y )+sin Q-vy)=x_D €C )V >¢ B-13)
p ( p p Yo p Tp p ¢

Eq {B-13) yields

tan (0 - > -k B-14
( Yp) tet » ( )

Eqs (B-12) and {B-14) imply that the singular control has rotated the

flight path direction of the pursuer away from the final line of sight

direction 0. It is concluded that an optimal solution to this problem

cannot terminate on a singular arc.

The remaining control sequence to consider is {ch 2in’ chs’
CLP = 0} which corresponds to trajectory 3 in Figure 27. let t = ¢t _,

denote the time of switching from the singular to the C

Lp = 0 arc.
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For tz <t < tl. Mp‘ must equal zero. This implies from Eq (B-8) that

t 0 - 3 > - B-15
an ( Yp) utl n ( )

since A D C_ /N 2 is positive for reasons already stated. For
Y P Tp P

to> tl' MP must be negative from Figure 27.

This implies, using Eq
(8'8) [ 3 thlt

t - v -
an (¢ v ”t; » (B-16)

Eqs (B-15) and (B-16) imply that the singular contrel has rotated the

flight path direction away from the 0 direction. This control sequence

is therefore not optimal.

R
Similar arguments can be made using M * and M to show that the
sequences

{c =0, C

Lp -‘x'o ch Lp m}s {CLP mo C }’

Lps’ cl.p max
and

{ch max’ chs’ ch = 0}

arc not optimal contrcl sequences. Control sequences invelving

switching between maximum and minimum controls are not -ptimal because

they imply a rotation away from the terminal line of sight direction
0.

Conclusions

The conclusion is that for the pursuer the following control

sequences are candidates for an optimal solution:

c c ,C =0}, (C c ,{€C =0
o max F Lp miz’ 1p boAC max OF Lpnin} {Lp }
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An analvsis similar to this for the evader leads to the conclusion
that an optimal solution consists of one of the following control
sequences: |

c =0}, {C

or C
Le max ie min’ Le
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